1. Best Starting Hands Poker
  2. Odds In Poker
  3. Starting Poker Hands Odds Chart
  4. 5 Card Poker Hand Odds

Wizard Recommends

  • €1500 Welcome Bonus
  • €100 + 300 Free Spins
  • 100% Welcome Bonus

On This Page

Obviously, you have to learn poker in the right way as well and only then you will take full advantage of understanding poker math and implementing poker odds to gain the best possible results. That being said, you can always join my free poker training and start improving your game! Professional’s will tell you to play less hands and the less (but better) hand’s that you play will give you more money for your value. There are a few way’s to determine these values. In our 3rd Party Poker Software Program section there are several programs that help determine your odd’s of winning but these charts let you know how. Feb 12, 2011  Below you'll find a list of Texas Hold'em starting hands organized by relative strength.The following charts contains every 2-card possible combination you can be dealt in Texas Hold'em. Each hand is followed by its long-term winning percentage (out of 100, of course) against a specific number of opponents holding random cards. The following is a passage from Wikipedia on starting hands probability. The 1,326 starting hands can be reduced for purposes of determining the probability of starting hands for Hold 'em—since suits have no relative value in poker, many of these hands are identical in value before the flop.

Introduction

The following table ranks the top hands in a 6-player game. This table assumes that all players stay in until the end.

If you tried to make a play with the attempt of stealing the pot or are playing small ball poker (playing a wider set of starting hands) and up against a monster, like A-J, A-Q, or A-K, you’ll still have a 35% chance of winning the hand.

Explanation of column headings:
  • Cards: Initial two-card hand.
  • Probability of win: Probability that this hand will win, or tie for the win.
  • Average win: This is how much the player will win on average, including his own bets, if the player does win. This is less than 6 because sometimes the player will have to split the pot.
  • Expected value: This is how many units the player can expect to win (positive) or lose (negative) with this hand. For example if the player had a pair of aces and contibuted $1 to the pot then the player could expect to have a net win of $1.95.
  • Probability: Probability of getting this hand to begin with.
  • Additive probability: Probability of getting this hand or any stronger hand to begin with.

Initial Hold'em Hands in Rank Order for 6-Player Game

CardsProbability of WinAverage WinExpected ValueProbabilityAdditive Probability
Pair of A's49.51%5.961.95080.45%0.45%
Pair of K's43.32%5.951.57750.45%0.90%
Pair of Q's38.3%5.931.27290.45%1.36%
Pair of J's34.05%5.921.01420.45%1.81%
A/K suited32.15%5.80.86410.30%2.11%
Pair of T's30.44%5.890.79440.45%2.56%
A/Q suited30.56%5.760.75890.30%2.87%
K/Q suited29.55%5.760.70150.30%3.17%
A/J suited29.28%5.710.67230.30%3.47%
A/K unsuited28.96%5.770.67040.90%4.37%
K/J suited28.28%5.720.61670.30%4.68%
A/T suited28.27%5.670.60210.30%4.98%
Pair of 9's27.11%5.890.59780.45%5.43%
Q/J suited27.57%5.710.57370.30%5.73%
A/Q unsuited27.21%5.710.5550.90%6.64%
K/T suited27.32%5.680.55060.30%6.94%
Q/T suited26.64%5.670.51010.30%7.24%
K/Q unsuited26.28%5.720.50280.90%8.14%
J/T suited26.33%5.660.49040.30%8.45%
A/J unsuited25.79%5.660.45970.90%9.35%
A/9 suited25.75%5.620.44740.30%9.65%
Pair of 8's24.51%5.880.44160.45%10.11%
K/J unsuited24.88%5.670.40970.90%11.01%
K/9 suited24.73%5.640.39460.30%11.31%
A/8 suited24.98%5.580.39330.30%11.61%
A/T unsuited24.66%5.60.38170.90%12.52%
Q/J unsuited24.26%5.660.37210.90%13.42%
Q/9 suited24.07%5.640.35650.30%13.73%
A/7 suited24.27%5.540.34440.30%14.03%
T/9 suited23.9%5.620.34320.30%14.33%
J/9 suited23.82%5.630.34080.30%14.63%
K/T unsuited23.8%5.610.33560.90%15.54%
A/5 suited24.19%5.50.33090.30%15.84%
Pair of 7's22.35%5.870.31160.45%16.29%
Q/T unsuited23.2%5.610.30060.90%17.19%
A/4 suited23.63%5.50.30020.30%17.5%
A/6 suited23.5%5.510.29540.30%17.8%
J/T unsuited23.03%5.60.28950.90%18.7%
K/8 suited22.97%5.580.2830.30%19%
A/3 suited23.05%5.510.27050.30%19.31%
Q/8 suited22.24%5.590.24360.30%19.61%
K/7 suited22.37%5.550.24060.30%19.91%
A/2 suited22.39%5.520.23570.30%20.21%
T/8 suited22.12%5.580.23450.30%20.51%
J/8 suited22.01%5.590.22980.30%20.81%
9/8 suited21.72%5.60.21650.30%21.12%
A/9 unsuited21.93%5.530.21360.90%22.02%
Pair of 6's20.59%5.850.20540.45%22.47%
K/6 suited21.75%5.520.19960.30%22.78%
K/5 suited21.29%5.490.16920.30%23.08%
K/9 unsuited20.98%5.560.16590.90%23.98%
A/8 unsuited21.07%5.470.15330.90%24.89%
Q/7 suited20.65%5.540.14340.30%25.19%
K/4 suited20.75%5.50.14060.30%25.49%
8/7 suited20.39%5.570.13670.30%25.79%
Q/9 unsuited20.41%5.550.13340.90%26.7%
T/7 suited20.46%5.540.13330.30%27%
T/9 unsuited20.44%5.540.13220.90%27.9%
9/7 suited20.30%5.570.12990.30%28.21%
J/7 suited20.38%5.540.12930.30%28.51%
J/9 unsuited20.28%5.550.12480.90%29.41%
K/3 suited20.25%5.510.11540.30%29.71%
Pair of 5's19.05%5.840.11180.45%30.17%
Q/6 suited20.19%5.50.11090.30%30.47%
A/7 unsuited20.25%5.420.09810.90%31.37%
K/2 suited19.76%5.520.09090.30%31.67%
A/5 unsuited20.15%5.370.0830.90%32.58%
Q/5 suited19.72%5.480.08060.30%32.88%
7/6 suited19.31%5.560.07360.30%33.18%
8/6 suited19.11%5.540.0590.30%33.48%
Q/4 suited19.22%5.490.05470.30%33.79%
A/4 unsuited19.51%5.370.04840.90%34.69%
A/6 unsuited19.43%5.380.04580.90%35.6%
K/8 unsuited19.04%5.480.0430.90%36.5%
T/6 suited18.95%5.490.04070.30%36.8%
9/6 suited18.82%5.530.04020.30%37.1%
J/6 suited18.92%5.490.0380.30%37.41%
Pair of 4's17.76%5.840.03690.45%37.86%
Q/3 suited18.69%5.50.02810.30%38.16%
6/5 suited18.45%5.550.02330.30%38.46%
A/3 unsuited18.87%5.380.01480.90%39.37%
T/8 unsuited18.5%5.480.01380.90%40.27%
J/5 suited18.56%5.460.01310.30%40.57%
Q/8 unsuited18.43%5.480.01040.90%41.48%
Q/2 suited18.25%5.520.00630.30%41.78%
J/8 unsuited18.31%5.480.0040.90%42.68%
7/5 suited18.1%5.530.00070.30%42.99%
9/8 unsuited18.14%5.5-0.00130.90%43.89%
K/7 unsuited18.38%5.42-0.00360.90%44.8%
5/4 suited17.82%5.54-0.01250.30%45.1%
J/4 suited18.03%5.47-0.01390.30%45.4%
A/2 unsuited18.15%5.38-0.02350.90%46.3%
8/5 suited17.73%5.5-0.02440.30%46.61%
Pair of 3's16.69%5.85-0.02450.45%47.06%
J/3 suited17.57%5.48-0.03650.30%47.36%
T/5 suited17.62%5.44-0.0410.30%47.66%
9/5 suited17.41%5.48-0.04580.30%47.96%
K/6 unsuited17.72%5.38-0.0470.90%48.87%
6/4 suited17.17%5.54-0.04840.30%49.17%
J/2 suited17.11%5.5-0.05890.30%49.47%
T/4 suited17.19%5.44-0.06430.30%49.77%
Pair of 2's15.87%5.85-0.07080.45%50.23%
7/4 suited16.66%5.52-0.08090.30%50.53%
5/3 suited16.59%5.54-0.0810.30%50.83%
K/5 unsuited17.18%5.34-0.08290.90%51.73%
8/7 unsuited16.76%5.47-0.08410.90%52.64%
T/3 suited16.72%5.46-0.08710.30%52.94%
9/7 unsuited16.61%5.45-0.09530.90%53.85%
T/7 unsuited16.71%5.41-0.09620.90%54.75%
Q/7 unsuited16.7%5.4-0.0980.90%55.66%
J/7 unsuited16.51%5.41-0.10730.90%56.56%
8/4 suited16.25%5.49-0.10850.30%56.86%
T/2 suited16.27%5.48-0.10890.30%57.16%
K/4 unsuited16.59%5.34-0.1140.90%58.07%
4/3 suited15.9%5.56-0.11620.30%58.37%
9/4 suited16.05%5.46-0.12370.30%58.67%
6/3 suited15.77%5.54-0.1270.30%58.97%
Q/6 unsuited16.17%5.35-0.1350.90%59.88%
K/3 unsuited16.03%5.35-0.1420.90%60.78%
9/3 suited15.67%5.47-0.1430.30%61.09%
7/6 unsuited15.62%5.43-0.15120.90%61.99%
5/2 suited15.19%5.53-0.15930.30%62.29%
7/3 suited15.25%5.51-0.16050.30%62.59%
9/2 suited15.22%5.49-0.16440.30%62.9%
Q/5 unsuited15.66%5.31-0.16850.90%63.8%
K/2 unsuited15.49%5.36-0.16950.90%64.71%
8/6 unsuited15.35%5.41-0.16980.90%65.61%
8/3 suited14.94%5.47-0.18320.30%65.91%
4/2 suited14.68%5.56-0.18360.30%66.21%
9/6 unsuited15%5.38-0.1930.90%67.12%
T/6 unsuited15.06%5.33-0.19720.90%68.02%
Q/4 unsuited15.08%5.31-0.19870.90%68.93%
8/2 suited14.58%5.49-0.20.30%69.23%
6/5 unsuited14.71%5.41-0.20450.90%70.14%
J/6 unsuited14.94%5.32-0.20530.90%71.04%
6/2 suited14.37%5.53-0.20560.30%71.34%
3/2 suited14.02%5.58-0.21710.30%71.64%
Q/3 unsuited14.52%5.33-0.22670.90%72.55%
7/5 unsuited14.34%5.38-0.22890.90%73.45%
7/2 suited13.97%5.49-0.23310.30%73.76%
J/5 unsuited14.53%5.27-0.23390.90%74.66%
5/4 unsuited14.05%5.39-0.24180.90%75.57%
Q/2 unsuited14%5.34-0.25230.90%76.47%
8/5 unsuited13.87%5.34-0.25950.90%77.38%
J/4 unsuited13.96%5.28-0.26320.90%78.28%
6/4 unsuited13.34%5.39-0.28140.90%79.19%
9/5 unsuited13.48%5.3-0.28590.90%80.09%
T/5 unsuited13.63%5.24-0.28590.90%81%
J/3 unsuited13.42%5.29-0.28980.90%81.9%
T/4 unsuited13.16%5.23-0.31130.90%82.81%
J/2 unsuited12.92%5.3-0.31470.90%83.71%
5/3 unsuited12.71%5.38-0.31670.90%84.62%
7/4 unsuited12.78%5.34-0.31750.90%85.52%
T/3 unsuited12.62%5.25-0.33770.90%86.43%
8/4 unsuited12.29%5.29-0.350.90%87.33%
4/3 unsuited11.99%5.39-0.35370.90%88.24%
T/2 unsuited12.12%5.26-0.36230.90%89.14%
6/3 unsuited11.82%5.35-0.36720.90%90.05%
9/4 unsuited12.01%5.24-0.3710.90%90.95%
9/3 unsuited11.58%5.25-0.39270.90%91.86%
5/2 unsuited11.23%5.34-0.39980.90%92.76%
7/3 unsuited11.24%5.3-0.40460.90%93.67%
9/2 unsuited11.08%5.26-0.4170.90%94.57%
4/2 unsuited10.67%5.37-0.42670.90%95.48%
8/3 unsuited10.86%5.23-0.43140.90%96.38%
6/2 unsuited10.32%5.31-0.45190.90%97.29%
8/2 unsuited10.45%5.24-0.45220.90%98.19%
3/2 unsuited9.98%5.39-0.4620.90%99.1%
7/2 unsuited9.87%5.24-0.48330.90%100%
Total18.14%5.510100%0%

Top 20% of Hands in 6-Player Game

  • Pair of sevens or higher.
  • Suited A/7 or higher.
  • Suited A/5.
  • Any two suited cards both 9 or higher.
  • Unsuited A/T or higher.
  • Unsuited K/T or higher.
  • Unsuited Q/J.

Methodology

This table is the result of a random simulation and assumes all players stay in until the end of the hand.

The following table shows my power rating for each initial 2-card hand in a 6-player game. The numbers are on a 0 to 40 scale. Use the top table if you have a pair, the middle table if your cards are suited, and the bottom table if your cards are unsuited. Except for a pair,look up your high card along the left and your low card along the top.

Inside Links


Written by: Michael Shackleford

In our poker math and probability lesson it was stated that when it comes to poker; “the math is essential“. Although you don’t need to be a math genius to play poker, a solid understanding of probability will serve you well and knowing the odds is what it’s all about in poker. It has also been said that in poker, there are good bets and bad bets. The game just determines who can tell the difference. That statement relates to the importance of knowing and understanding the math of the game.

In this lesson, we’re going to focus on drawing odds in poker and how to calculate your chances of hitting a winning hand. We’ll start with some basic math before showing you how to correctly calculate your odds. Don’t worry about any complex math – we will show you how to crunch the numbers, but we’ll also provide some simple and easy shortcuts that you can commit to memory.

Basic Math – Odds and Percentages

Odds can be expressed both “for” and “against”. Let’s use a poker example to illustrate. The odds against hitting a flush when you hold four suited cards with one card to come is expressed as approximately 4-to-1. This is a ratio, not a fraction. It doesn’t mean “a quarter”. To figure the odds for this event simply add 4 and 1 together, which makes 5. So in this example you would expect to hit your flush 1 out of every 5 times. In percentage terms this would be expressed as 20% (100 / 5).

Here are some examples:

  • 2-to-1 against = 1 out of every 3 times = 33.3%
  • 3-to-1 against = 1 out of every 4 times = 25%
  • 4-to-1 against = 1 out of every 5 times= 20%
  • 5-to-1 against = 1 out of every 6 times = 16.6%

Converting odds into a percentage:

  • 3-to-1 odds: 3 + 1 = 4. Then 100 / 4 = 25%
  • 4-to-1 odds: 4 + 1 = 5. Then 100 / 5 = 20%

Converting a percentage into odds:

  • 25%: 100 / 25 = 4. Then 4 – 1 = 3, giving 3-to-1 odds.
  • 20%: 100 / 20 = 5. Then 5 – 1 = 4, giving 4-to-1 odds.

Another method of converting percentage into odds is to divide the percentage chance when you don’t hit by the percentage when you do hit. For example, with a 20% chance of hitting (such as in a flush draw) we would do the following; 80% / 20% = 4, thus 4-to-1. Here are some other examples:

  • 25% chance = 75 / 25 = 3 (thus, 3-to-1 odds).
  • 30% chance = 70 / 30 = 2.33 (thus, 2.33-to-1 odds).

Some people are more comfortable working with percentages rather than odds, and vice versa. What’s most important is that you fully understand how odds work, because now we’re going to apply this knowledge of odds to the game of poker.

DO YOU PLAY TOURNAMENTS?

One of the most vital skills you can have is knowing when, and when not, to 3bet all-in preflop. Preflop aggression is crucial in middle-late stages, and this Crash Course will prepare you to 3bet like a pro from EVERY position. Stop guessing, start crushing, and 3bet your way to the final table.


Fundamentally, the aim of the game in Free Roulette is synonymous to that when playing online Roulette at an internet casino and even when playing the game of luck at a land-based casino: You must accurately predicting which slot the ball falls into once the Roulette wheel comes to a halt. Casino roulette wheel online. PLAY ONLINE ROULETTE. The Roulette wheel has represented glitz and glamour since the 19th century, and it still draws huge crowds at all of the Caesars Casino properties. Putting your money down on a number and then waiting in anticipation to see if the spinning ball on the wheel.

Counting Your Outs

Before you can begin to calculate your poker odds you need to know your “outs”. An out is a card which will make your hand. For example, if you are on a flush draw with four hearts in your hand, then there will be nine hearts (outs) remaining in the deck to give you a flush. Remember there are thirteen cards in a suit, so this is easily worked out; 13 – 4 = 9.

Another example would be if you hold a hand like and hit two pair on the flop of . You might already have the best hand, but there’s room for improvement and you have four ways of making a full house. Any of the following cards will help improve your hand to a full house; .

The following table provides a short list of some common outs for post-flop play. I recommend you commit these outs to memory:

Table #1 – Outs to Improve Your Hand

The next table provides a list of even more types of draws and give examples, including the specific outs needed to make your hand. Take a moment to study these examples:

Table #2 – Examples of Drawing Hands (click to enlarge)

Counting outs is a fairly straightforward process. You simply count the number of unknown cards that will improve your hand, right? Wait… there are one or two things you need to consider:

Don’t Count Outs Twice

There are 15 outs when you have both a straight and flush draw. You might be wondering why it’s 15 outs and not 17 outs, since there are 8 outs to make a straight and 9 outs for a flush (and 8 + 9 = 17). The reason is simple… in our example from table #2 the and the will make a flush and also complete a straight. These outs cannot be counted twice, so our total outs for this type of draw is 15 and not 17.

Anti-Outs and Blockers

There are outs that will improve your hand but won’t help you win. For example, suppose you hold on a flop of . You’re drawing to a straight and any two or any seven will help you make it. However, the flop also contains two hearts, so if you hit the or the you will have a straight, but could be losing to a flush. So from 8 possible outs you really only have 6 good outs.

It’s generally better to err on the side of caution when assessing your possible outs. Don’t fall into the trap of assuming that all your outs will help you. Some won’t, and they should be discounted from the equation. There are good outs, no-so good outs, and anti-outs. Keep this in mind.

Calculating Your Poker Odds

Once you know how many outs you’ve got (remember to only include “good outs”), it’s time to calculate your odds. There are many ways to figure the actual odds of hitting these outs, and we’ll explain three methods. This first one does not require math, just use the handy chart below:

Table #3 – Poker Odds Chart

As you can see in the above table, if you’re holding a flush draw after the flop (9 outs) you have a 19.1% chance of hitting it on the turn or expressed in odds, you’re 4.22-to-1 against. The odds are slightly better from the turn to the river, and much better when you have both cards still to come. Indeed, with both the turn and river you have a 35% chance of making your flush, or 1.86-to-1.

We have created a printable version of the poker drawing odds chart which will load as a PDF document (in a new window). You’ll need to have Adobe Acrobat on your computer to be able to view the PDF, but this is installed on most computers by default. We recommend you print the chart and use it as a source of reference. It should come in very handy.

Doing the Math – Crunching Numbers

There are a couple of ways to do the math. One is complete and totally accurate and the other, a short cut which is close enough.

Let’s again use a flush draw as an example. The odds against hitting your flush from the flop to the river is 1.86-to-1. How do we get to this number? Let’s take a look…

With 9 hearts remaining there would be 36 combinations of getting 2 hearts and making your flush with 5 hearts. This is calculated as follows:

(9 x 8 / 2 x 1) = (72 / 2) ≈ 36.

This is the probability of 2 running hearts when you only need 1 but this has to be figured. Of the 47 unknown remaining cards, 38 of them can combine with any of the 9 remaining hearts:

9 x 38 ≈ 342.

Now we know there are 342 combinations of any non heart/heart combination. So we then add the two combinations that can make you your flush:

36 + 342 ≈ 380.

The total number of turn and river combos is 1081 which is calculated as follows:

(47 x 46 / 2 x 1) = (2162 / 2) ≈ 1081.

Now you take the 380 possible ways to make it and divide by the 1081 total possible outcomes:

380 / 1081 = 35.18518%

This number can be rounded to .352 or just .35 in decimal terms. You divide .35 into its reciprocal of .65:

0.65 / 0.35 = 1.8571428

And voila, this is how we reach 1.86. If that made you dizzy, here is the short hand method because you do not need to know it to 7 decimal points.

The Rule of Four and Two

A much easier way of calculating poker odds is the 4 and 2 method, which states you multiply your outs by 4 when you have both the turn and river to come – and with one card to go (i.e. turn to river) you would multiply your outs by 2 instead of 4.

Imagine a player goes all-in and by calling you’re guaranteed to see both the turn and river cards. If you have nine outs then it’s just a case of 9 x 4 = 36. It doesn’t match the exact odds given in the chart, but it’s accurate enough.

What about with just one card to come? Well, it’s even easier. Using our flush example, nine outs would equal 18% (9 x 2). For a straight draw, simply count the outs and multiply by two, so that’s 16% (8 x 2) – which is almost 17%. Again, it’s close enough and easy to do – you really don’t have to be a math genius.

Do you know how to maximize value when your draw DOES hit? Like…when to slowplay, when to continue betting, and if you do bet or raise – what the perfect size is? These are all things you’ll learn in CORE, and you can dive into this monster course today for just $5 down…

Conclusion

In this lesson we’ve covered a lot of ground. We haven’t mentioned the topic of pot odds yet – which is when we calculate whether or not it’s correct to call a bet based on the odds. This lesson was step one of the process, and in our pot odds lesson we’ll give some examples of how the knowledge of poker odds is applied to making crucial decisions at the poker table.

Best Starting Hands Poker

As for calculating your odds…. have faith in the tables, they are accurate and the math is correct. Memorize some of the common draws, such as knowing that a flush draw is 4-to-1 against or 20%. The reason this is easier is that it requires less work when calculating the pot odds, which we’ll get to in the next lesson.

Related Lessons

Starting

By Tom 'TIME' Leonard

Odds In Poker

Tom has been writing about poker since 1994 and has played across the USA for over 40 years, playing every game in almost every card room in Atlantic City, California and Las Vegas.

Related Lessons

Related Lessons

Starting Poker Hands Odds Chart

Starting poker hands odds chart

5 Card Poker Hand Odds

Share: